\(\dfrac{1}{x-a}+\dfrac{1}{x-b}+\dfrac{1}{x-c}=0\\ \Leftrightarrow\dfrac{\left(x-b\right)\left(x-c\right)+\left(x-a\right)\left(x-c\right)+\left(x-a\right)\left(x-b\right)}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}=0\\ \Rightarrow\left(x-b\right)\left(x-c\right)+\left(x-a\right)\left(x-c\right)+\left(x-a\right)\left(x-b\right)=0\\ \Leftrightarrow x^2-\left(b+c\right)x+bc+x^2-\left(a+c\right)x+ac+x^2-\left(a+b\right)x+ab=0\\ \Leftrightarrow3x^2-\left(2a+2b+2a\right)x+ab+ac+bc=0\)
phương trình có 2 nghiệm phân biệt khi và chỉ khi \(\Delta>0\) (1)
ta có: \(\Delta=\left(-2a-2b-2c\right)^2-4.3.\left(ab+bc+ca\right)\\ \Delta=4a^2+4b^2+4c^2-4ab-4ac-4bc\\ \Delta=4\left(a^2+b^2+c^2-ab-ac-bc\right)\text{ }\text{ }\left(2\right)\)
mặt khác:
\(a^2+b^2+c^2\ge ab+bc+ca\left(dễ\:dàng\:chứng\:minh\:được\right)\\ đẳng\:thức\:xảy\:ra\:khi\:a=b=c\)
mà a,b,c phân biệt nên :\(a^2+b^2+c^2>ab+bc+ca\\ \Leftrightarrow a^2+b^2+c^2-ab-bc-ca>0\text{ }\left(3\right)\)
từ (1) (2) và (3) => đpcm