TL

Chứng minh rằng từ tỉ lệ thuận

\(\dfrac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}\)=\(\dfrac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}\)(k\(\varepsilon\)N) ta có thể suy ra được \(\dfrac{a}{b}\)= cộng trừ \(\dfrac{c}{d}\)

LL
19 tháng 11 2021 lúc 13:30

ĐKXĐ: \(b,d\ne0,c\ne\pm d\)

Áp dụng t/c dtsbn:

\(\dfrac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}=\dfrac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\dfrac{a^{2k}+b^{2k}+a^{2k}-b^{2k}}{c^{2k}+d^{2k}+c^{2k}-d^{2k}}=\dfrac{2a^{2k}}{2c^{2k}}=\dfrac{a^{2k}}{c^{2k}}\left(1\right)\)

\(\dfrac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}=\dfrac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\dfrac{a^{2k}+b^{2k}-a^{2k}+b^{2k}}{c^{2k}+d^{2k}-c^{2k}+d^{2k}}=\dfrac{2b^{2k}}{2d^{2k}}=\dfrac{b^{2k}}{d^{2k}}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a^{2k}}{c^{2k}}=\dfrac{b^{2k}}{d^{2k}}\Rightarrow\dfrac{a^{2k}}{b^{2k}}=\dfrac{c^{2k}}{d^{2k}}\Rightarrow\dfrac{a}{b}=\pm\dfrac{c}{d}\left(đpcm\right)\)

Bình luận (1)

Các câu hỏi tương tự
GT
Xem chi tiết
LD
Xem chi tiết
QB
Xem chi tiết
LC
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết
TA
Xem chi tiết
TO
Xem chi tiết