NC

chứng minh rằng trong n số tự nhiên bất kỳ luôn tồn tại một số chia hết cho n hoặc một số có tổng chia hết cho n

NL
2 tháng 3 2018 lúc 22:08

Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều

nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng

hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
BV
Xem chi tiết
HS
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
LD
Xem chi tiết
HH
Xem chi tiết
TD
Xem chi tiết