Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)
chứng minh tam giác ABC đều
a) sin2A+sin2B+sin2C=sinA+sinB+sinC
b) sin6A + sin6B + sin 6C = 0
c) sin A + sinB + sinC = \(cos\frac{A}{2}+cos\frac{B}{2}+cos\frac{C}{2}\)
d) \(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}=\frac{1}{8}\)
tính
a)A= \(sin^2\frac{\pi}{3}+sin^2\frac{\pi}{9}+sin^2\frac{7\pi}{18}+sin^2\frac{\pi}{6}\)
b) B= \(sin^2\frac{\pi}{6}+sin^2\frac{\pi}{3}+sin^2\frac{\pi}{4}+sin^2\frac{9\pi}{4}+tan\frac{\pi}{6}.cot\frac{\pi}{6}\)
c) C= \(cos^215+cos^225+cos^235+cos^245+cos^2105+cos^2115+cos^2125\)
Chứng minh|
a) \(\frac{1+sin2x}{sinx+cosx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=sinx\)
b) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
Cho: cosa, cosb ≠ 0, chứng minh đẳng thức: \(\frac{\sin\left(a+b\right).\sin\left(a-b\right)}{\cos^2a.\cos^2b}=\tan^2a-\tan^2b\)
rút gọn các biểu thức sau
A=\(\frac{tan\alpha+tanb}{tan\left(a+b\right)}-\frac{tan\alpha-tanb}{tan\left(a-b\right)}\)
B=\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3+sin3x}{sinx}\)
Giúp em với , em kém lượng giác lắm ;; ;;
Tính giá trị biểu thức
a) A= \(sin^2\frac{\pi}{3}+sin^2\frac{\pi}{9}+sin^2\frac{7\pi}{18}+sin^2\frac{\pi}{6}\)
b) B= \(sin^2\frac{\pi}{6}+sin^2\frac{\pi}{3}+sin^2\frac{\pi}{4}+sin^2\frac{9\pi}{4}+tan\frac{\pi}{6}.cot\frac{\pi}{6}\)
c) C= \(cos^215+cos^225+cos^235+cos^245+cos^2105+cos^2115+cos^2125\)
a) chứng minh không phụ thuộc vào x
Q= [(1-sinx-cos2x+sin3x)/(cosx+sin2x+cos3x)]*tan(x-(pi/2)
b) chứng minh:
cos 5x*cos 3x+sin 7x*sin x=2cos^3 2x -2 cos^2 x +1
a/ cho sin a = \(\frac{-3}{5}\) và \(\frac{-\pi}{2}< a< 0\) . Tính cos a , tan a
b/ Rút gọn biểu thức : A = \(\frac{tana+cota}{1+tan^2a}\)