Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng tổng lập phương các số tự nhiên liên tiếp từ 1 là một số chính phương : 1+3+5+...+ n mũ 3 =(1+2+...+ n) mũ 2
từ các chữ số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho số đó không có 2 chữ số liên tiếp nào cùng lẻ
Đặt \(n=p_1^{\alpha_1}.p_2^{\alpha_2}...p_s^{\alpha_s}\) (phân tích tiêu chuẩn). Kí hiệu \(\sigma\left(n\right)=\sum\limits^s_{i=1}\alpha_i\). Chứng minh rằng tồn tại 2023 số nguyên dương liên tiếp sao cho trong đó có 2007 số nguyên \(n\) thỏa \(\sigma\left(n\right)< 11\)
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
Chứng tỏ rằng tập hợp các số tự nhiên N và tập hợp các số nguyên dương lẻ L là có cùng lực lượng
Với mỗi số nguyên dương n, kí hiệu Sn = 1!+2!+···+n!. Chứng minh rằng tồn tại số nguyên dương k sao cho Sk có ít nhất một ước nguyên tố lớn hơn 3^2019
Cho mệnh đề P: “5 là số có hai chữ số” và Q là một trong các mệnh đề: “16 chia hết cho 8”; “4 là số nguyên tố”; “ 2 là số vô tỉ”; “4 là số tự nhiên”
Số mệnh đề thỏa mãn P ⇒ Q là mệnh đề sai là:
A. 0
B. 3
C. 1
D. 4
Chứng tỏ 15n+4 và 12n+3 là hai số nguyên tố cùng nhau
chứng minh rằng có hai số tự nhiên bất kì không thuộc một số phần tử các hợp chất trong mỗi phân số tự nhiên không tồn tại trong một số các phần tử trong hệ huong trình theo giả thiết