TM

chứng minh rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

DV
28 tháng 6 2015 lúc 14:45

Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .

Bình luận (0)

Các câu hỏi tương tự
DM
Xem chi tiết
LY
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết