Lời giải:
Gọi số tự nhiên là $a(a\neq 0)$ thì nghịch đảo của nó là $\frac{1}{a}$. Ta có:
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}\geq 0$ với mọi $a>0$
$\Rightarrow a+\frac{1}{a}\geq 2$ với mọi $a>0$
$\Rightarrow$ ta có đpcm.
Lời giải:
Gọi số tự nhiên là $a(a\neq 0)$ thì nghịch đảo của nó là $\frac{1}{a}$. Ta có:
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}\geq 0$ với mọi $a>0$
$\Rightarrow a+\frac{1}{a}\geq 2$ với mọi $a>0$
$\Rightarrow$ ta có đpcm.
Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2.
Chứng minh rằng tổng của một phân số với số nghịch đảo của nó thì không nhỏ hơn 2
Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
Bài toán: Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
chứng minh rằng tổng dương với số nghịch đảo của nó thì không nhỏ hơn 2
chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn hai ?
Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2.
Bài 101*:
Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
Chứng minh rằng tổng của một phân số dương vơi số nghịch đảo của nó thì không nhỏ hơn 2
Viết số nghịch đaoả của -2 dưới dạng tổng các nghịch đảo của ba số nguyên khác nhau