4 số lẻ ltiếp là
2k+1;2k+3;2k+5;2k+7(k thuộc N)
tổng là:
2k+1+2k+3+2k+5+2k+7
=8k+16
=8(k+2)
Vậy tổng của 4 số lẻ liên tiếp thì hết cho 8
Ta đặt 4 số lẻ liên tiếp là a+1;a+3;a+5;a+7
Ta có: (a+1)+(a+3)+(a+5)+(a+7)
=a+1+a+3+a+5+a+7
=(a+a+a+a)+(1+3+5+7)
=4a+16
Mà: 16 chia hết cho 8
=> 4x+16 chia hết cho 8
=> Ta có kết luận: Tổng 4 số lẻ liên tiếp chia hết cho 8