Gọi ba tự nhiên lẻ bất kì lần lượt là \(2m+1,2n+1,2p+1\).
Ta có: \(\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2p+1\right)^2\)
\(=4m^2+4m+1+4n^2+4n+1+4p^2+4p+1\)
\(\equiv3\left(mod4\right)\)
mà số chính phương khi chia cho \(4\)chỉ có thể dư \(0\)hoặc \(1\).
Do đó ta có đpcm.