Violympic toán 9

CC

Chứng minh rằng: tổng bình phương của p số nguyên tố liên tiếp ( p ≥ 3) chia hết cho p.

HN
15 tháng 7 2019 lúc 8:16

Gọi p số nguyên liên tiếp đó là: \(x,x+1,x+2,...,x+p-1\)

Ta có:

\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+p-1\right)\equiv1+2+3+...+p-1\left(modp\right)\)

\(\Rightarrow x^2+\left(x+1\right)^2+\left(x+2\right)^2+...+\left(x+p-1\right)^2\equiv1^2+2^2+3^2+...+\left(p-1\right)^2\left(modp\right)\)

Ta lại có:

\(1^2+2^2+3^2+...+\left(p-1\right)^2=\frac{\left(p-1\right)p\left(2p-1\right)}{6}\)

Vì p là số nguyên tố lớn hơn 3 nên p không có ước 2, 3 từ đây ta thấy được là:

\(\left(p-1\right)p\left(2p-1\right)⋮6p\)

\(\Rightarrow1^2+2^2+3^2+...+\left(p-1\right)^2=\frac{\left(p-1\right)p\left(2p-1\right)}{6}⋮p\)

Vậy ta có điều phải chứng minh.

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
AJ
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
TA
Xem chi tiết
AD
Xem chi tiết