H24

chứng minh rằng tổng A =\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+............+\dfrac{1}{100}\)

không phải là số tự nhiên

DH
10 tháng 3 2021 lúc 19:17

Có thể làm như sau

Ta thấy \(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

.......

\(\dfrac{1}{100}< \dfrac{1}{50}\)

=> A = \(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)

Lại có

\(\dfrac{1}{51}>\dfrac{1}{100}\)

\(\dfrac{1}{52}>\dfrac{1}{100}\)

.......

\(\dfrac{1}{99}>\dfrac{1}{100}\)

=> A = \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)

=> \(\dfrac{1}{2}< A< 1\)

Vậy A không phải số tự nhiên

Bình luận (4)

Các câu hỏi tương tự
H24
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
HT
Xem chi tiết
LL
Xem chi tiết
DD
Xem chi tiết
TK
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết