số đó chia hết cho 2017 thôi
mình nhanh nhất nhé
số đó chia hết cho 2017 thôi
mình nhanh nhất nhé
chứng minh rằng tồn tại số có dạng 20162016...2016 gồm k số 2016(k là số tự nhiên, 1<k<2018) chia hết cho 2017
Chứng minh rằng có thể tìm được một số tự nhiên có dạng 20162016...2016 chia hết cho 41.
Cho số tự nhiên k \(\ge\)1 . Chứng minh rằng tồn tại một dãy gồm k số tự nhiên liên tiếp là các hợp số .
chứng minh rằng tồn tại số 20162016...2016 chia hết cho 2017
cho 2016 số tự nhiên a1,a2,a3,...,a2015,a2016. Chứng minh rằng trong 2016 số ấy, tồn tại một số chia hết cho 2016 hoặc tồn tại một vài số có tổng chia hết cho 2016
cho 2016 số tự nhiên a1,a2,a3,...,a2015,a2016. Chứng minh rằng trong 2016 số ấy, tồn tại một số chia hết cho 2016 hoặc tồn tại một vài số có tổng chia hết cho 2016
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
Cho 2016 số tự nhiên khác nhau và khác 0, trong đó không có số nào lớn hơn 4030. Chứng minh rằng, trong số 2016 số tự nhiên đã cho tồn tại ít nhất một nhóm gồm 3 số mà số này bằng tổng của hai số kia.
Chứng minh rằng trong các số tự nhiên liên tiếp khác nhau bao gồm 2015 chữ số 8 va 2016 chữ số 1 không tồn tại 2 số mà số này là ước của số kia .