CN

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là \(\frac{n\left(n-5\right)}{4}\)(dễ lắm ha .tớ biết kết quả rùi ,xemcasc cậu có pít ko thui)

a đã xem mak ko giải hoặc ko trả lời lak nnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

KT
10 tháng 2 2016 lúc 8:06

Ta chứng minh khẳng định đúng với mọi n ε  N*  ,  n ≥ 4.

Với n = 4, ta có tứ giác nên nó có hai đường chéo.

Mặt khác thay n = 4 vào công thức, ta có số đường chéo của tứ giác theo công thức là:    = 2

Vậy khẳng định là đúng với n= 4.

Giả sử khẳng định là đúng với n = k ≥ 4, tức là đa giác lồi k cạnh có

số đường chéo là 

 Ta phải chứng minh khẳng định đúng với n = k + 1. Nghĩa là phải chứng minh đa giác lồi k + 1cạnh có số đường chéo là 

Xét đa giác lồi k + 1 cạnh 

Nối A1  và   Ak, ta được đa giác k cạnh A1A2…Ak  có  đường chéo (giả thiết quy nạp). Nối Ak+1 với các đỉnh A2, A3, …, Ak-1, ta được thêm k -2 đường chéo, ngoài ra A1A cũng là một đường chéo.

Vậy số đường chéo của đa giác k + 1 cạnh là

                   + k - 2 + 1 = 

Như vậy, khẳng định cũng đúng với đa giác k + 1 cạnh



 

Bình luận (0)
KT
10 tháng 2 2016 lúc 8:07

Ta chứng minh khẳng định đúng với mọi n ε  N*  ,  n ≥ 4.

Với n = 4, ta có tứ giác nên nó có hai đường chéo.

Mặt khác thay n = 4 vào công thức, ta có số đường chéo của tứ giác theo công thức là:    = 2

Vậy khẳng định là đúng với n= 4.

Giả sử khẳng định là đúng với n = k ≥ 4, tức là đa giác lồi k cạnh có

số đường chéo là 

 Ta phải chứng minh khẳng định đúng với n = k + 1. Nghĩa là phải chứng minh đa giác lồi k + 1cạnh có số đường chéo là 

Xét đa giác lồi k + 1 cạnh 

Nối A1  và   Ak, ta được đa giác k cạnh A1A2…Ak  có  đường chéo (giả thiết quy nạp). Nối Ak+1 với các đỉnh A2, A3, …, Ak-1, ta được thêm k -2 đường chéo, ngoài ra A1A cũng là một đường chéo.

Vậy số đường chéo của đa giác k + 1 cạnh là

                   + k - 2 + 1 = 

Như vậy, khẳng định cũng đúng với đa giác k + 1 cạnh

duyệt lẹ

Bình luận (0)
BL
10 tháng 2 2016 lúc 8:07

sky nguyen thuy co quyen ????????( neu mi co quyen, voi nguoi khac thui chu dung hong co quyen voi ta)

duyet di!!!!!!!!!!!!

Bình luận (0)
KT
10 tháng 2 2016 lúc 8:08

dể òm

Ta chứng minh khẳng định đúng với mọi n ε  N*  ,  n ≥ 4.

Với n = 4, ta có tứ giác nên nó có hai đường chéo.

Mặt khác thay n = 4 vào công thức, ta có số đường chéo của tứ giác theo công thức là:    = 2

Vậy khẳng định là đúng với n= 4.

Giả sử khẳng định là đúng với n = k ≥ 4, tức là đa giác lồi k cạnh có

số đường chéo là 

 Ta phải chứng minh khẳng định đúng với n = k + 1. Nghĩa là phải chứng minh đa giác lồi k + 1cạnh có số đường chéo là 

Xét đa giác lồi k + 1 cạnh 

Nối A1  và   Ak, ta được đa giác k cạnh A1A2…Ak  có  đường chéo (giả thiết quy nạp). Nối Ak+1 với các đỉnh A2, A3, …, Ak-1, ta được thêm k -2 đường chéo, ngoài ra A1A cũng là một đường chéo.

Vậy số đường chéo của đa giác k + 1 cạnh là

                   + k - 2 + 1 = 

Như vậy, khẳng định cũng đúng với đa giác k + 1 cạnh



 

 

Bình luận (0)
LD
10 tháng 2 2016 lúc 8:22

vào google

Bình luận (0)
NH
10 tháng 2 2016 lúc 8:49

n=123

duyệt đi

Bình luận (0)
CB
17 tháng 2 2016 lúc 14:43

Còn mi thì là đồ VÔ DUYÊN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Lớp 1,2,3,4,5,6 sao giải được!

Bình luận (0)