MA

chứng minh rằng S=(a-b).(a-c).(a-d).(b-c).(b-d).(c-d) luôn chia hết cho 12

GC
9 tháng 5 2015 lúc 19:11

Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.Nếu ko thì 4 số dư theo thứ tự 0,1,2,3 \(\Leftrightarrow\) trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.Hiệu của 2 số chẵ và 2 số lẽ trong 4 số đó chia hết cho 2
 =>TÍch trên chia hết cho 3,4 => chia hết cho 12 
Đúng nhA' 

Bình luận (0)
H24
20 tháng 5 2015 lúc 15:46

Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.Nếu ko thì 4 số dư theo thứ tự 0,1,2,3 $\Leftrightarrow$⇔ trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.Hiệu của 2 số chẵ và 2 số lẽ trong 4 số đó chia hết cho 2
 =>TÍch trên chia hết cho 3,4 => chia hết cho 12 

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
DH
Xem chi tiết
QA
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
MU
Xem chi tiết
TH
Xem chi tiết