Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LT

Chứng minh rằng phân số \(\frac{5n+1}{20n+3}\)tối giản với mọi số tự nhiên n.

VT
12 tháng 7 2016 lúc 20:39

                     Gọi \(\left(5n+1,20n+3\right)\)\(=d\)\(\left(d\in N\right)\)

                    \(\Rightarrow\hept{\begin{cases}5n+1:d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}4.\left(5n+1\right):d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}20n+4:d\\20n+3:d\end{cases}}\)

                     \(\Rightarrow\left(20n+4\right)-\left(20n+3\right):d\)

                     hay 1 : d => \(d\inƯ\left(1\right)\)

                     Mà Ư(1) = {-1;1} => d \(\in\){-1;1}

                   Vì d là lớn nhất nên d = 1 hay \(\left(5n+1,20n+3\right)=1\)

                  => 5n+1 và 20n+3 là 2 số nguyên tố cùng nhau

                  Vậy \(\frac{5n+1}{20n+3}\)là phân số tối giản với mọi số tự nhiên n

                    Dấu chia hết mk viết là dấu chia,ủng hộ mk nha !!!

Bình luận (0)
SG
12 tháng 7 2016 lúc 20:37

Gọi d = ƯCLN(5n+1, 20n+3) (d thuộc N*)

=> 5n+1 chia hết cho d; 20n+3 chia hết cho d

=> 4.(5n + 1) chia hết cho d; 20n+3 chia hết cho d

=> 20n+4 chia hết cho d; 20n+3 chia hết cho d

=> (20n+4) - (20n+3) chia hết cho d

=> 20n + 4 - 20n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(5n+1, 20n+3) = 1

=> phân số 5n+1/20n+3 tối giản (đpcm)

Chú ý: phân số tối giản là phân số có ƯCLN của tử và mẫu = 1

Ủng hộ mk nha ^_-

Bình luận (0)
LT
12 tháng 7 2016 lúc 20:56

Cảm ơn mọi người nha

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
HA
Xem chi tiết
DH
Xem chi tiết
PN
Xem chi tiết