ND

Chứng minh rằng:

n(n+1)(n+2) chia hết cho 6

 

H24
19 tháng 5 2022 lúc 23:06

Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp

Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2

\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 2 (1)

Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3

\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 3 (2)

Từ (1) và (2) \(\Rightarrow\) n(n+1)(n+2) \(⋮\) (2.3) ( Vì ƯCLN(2,3)=1 )

                      \(\Rightarrow\) n(n+1)(n+2) \(⋮\) 6   (ĐPCM)

Vậy...

 

Bình luận (0)
NH
20 tháng 5 2022 lúc 10:29

Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp

Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2

 n(n+1)(n+2)  2 (1)

Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3

 n(n+1)(n+2)  3 (2)

Từ (1) và (2)  n(n+1)(n+2)  (2.3) ( Vì ƯCLN(2,3)=1 )

                       n(n+1)(n+2)  6   (ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
TQ
Xem chi tiết
HH
Xem chi tiết