số chẵn là số chia hết cho 2
=> những số chẵn >2 đều có lớn hơn hoặc băng 3 ước đó là 1;2 và chính nó
vì mọi số chẵn đều chia hết cho 2 nên không có số nguyên tố nào là số chẵn ngoài 2
số chẵn là số chia hết cho 2
=> những số chẵn >2 đều có lớn hơn hoặc băng 3 ước đó là 1;2 và chính nó
vì mọi số chẵn đều chia hết cho 2 nên không có số nguyên tố nào là số chẵn ngoài 2
chứng minh rằng ko có số nguyên tố chẵn nào ngoài 2
chứng minh rằng ngoài 3,5,7 thì không còn bất cứ 3 số lẻ liên tiếp nào là 3 số nguyên tố
1. Cho p và 2p + 1 là các số nguyên tố (p>3). Chứng minh rằng 4p + 1 là hợp số.
2. Cho p và 10p + 1 là các số nguyên tố (p>3). Chứng minh rằng 5p + 1 là hợp số.
3. Cho p và 8p2 - 1 là các số nguyên tố (p>3. Chứng minh rằng 8p2 + 1 là hợp số.
4. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. tổng của 25 số nguyên tố đó là số chẵn hay số lẻ. Vì sao?
5. Tổng của 3 số nguyên tố bằng 1012. Tìm số nguyên tố nhỏ nhất.
tìm 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố và chứng minh ngoài 3 số đó ra thì không có trường hợp nào khác
Câu 1: Một số tự nhiên chia hết cho 4 có ba chữ số đều chẵn, khác nhau và khác 0. Chứng minh rằng tồn tại cách đổi vị trí các chữ số để được một số chia hết cho 4.( giải chi tiết mình tick cho )
Câu 2: Chứng minh rằng trong tất cả các số tự nhiên khác nhau có bảy chữ số lập bởi cả bảy chữ số 1,2,3,4,5,6,7 không có hai số nào mà một số chia hết cho số còn lại.( giải chi tiết mình tick cho )
Câu 3: Một số nguyên tố chia cho 30 có số dư là r. Tìm r biết rằng r không là số nguyên tố.( giải chi tiết mình tick cho )
1 , hãy chứng minh tổng của 3 số chính phương liên tiếp không phải là một số chính phương
2,chứng minh tích của bộ số tự nhiên liên tiếp cộng với một luôn là số chính phương
3,ta biết có 25 số nguyên tố bé hơn 100 . tổng của 25 số nguyên tố là chẵn hay lẻ
Chứng minh rằng có thể tìm được 1 dãy số gồm n số tự nhiên liên tiếp (n>1) mà không có số nào là số nguyên tố?
1.chứng minh rằng (p-1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố
2. cho 2^m-1 là số nguyên tố. chứng minh m cũng là số nguyên tố
chứng minh rằng có thể tìm một dãy số gồm n số tự nhiênn liên tiếp(n>1) không có số tự nhiên nào là số nguyên tố