VD

chứng minh rằng nếu x3 +y+ z3 = 3xyz thì x + y + z=0 hoặc x=y=z

(giải chi tiết hộ mình nhé)

 

HP
19 tháng 6 2016 lúc 21:24

xem lại đề, chỗ 3xy2

Bình luận (0)
TN
20 tháng 6 2016 lúc 17:55

Ta có:\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=0\)

\(x+y+z=0\)hoặc \(x=y=z\)(Đpcm)

Bình luận (0)