Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x,y,z là các số thực dương khác 1 và xyz=1. Chứng minh rằng \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
Cho x,y,z là các số thực khác 0 thoả mãn xyz=1. Chứng minh rằng:
\(\frac{x^2}{\left(y-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
cho các số thực x,y,z khác 1 và xyz=1.chứng minh \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
cho các số thực x,y,z khác 1 và xyz=1.chứng minh \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
Bài 1: Cho biểu thức:
\(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
a, Rút gọn biểu thức A
b, Tìm x để A>0
Bài 2:
a, Chứng minh rằng nếu biểu thức sau không phụ thuộc vào biến x:
\(\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
b, Tính giá trị biểu thức \(P=\frac{x-y}{x+y}\). Biết \(x^2-2y^2=xy\left(x+y\ne0,y\ne0\right)\)
Bài 3: Chứng minh rằng: Nếu \(2n+1\)và \(3n+1\left(n\in N\right)\) đều là các số chính phương thì n chia hết cho 40
Chứng Minh Rằng Nếu \(\frac{x^2-yz}{x\left(1-yz\right)}\)=\(\frac{y^2-xz}{y\left(1-xz\right)}\)thì xy+xz+yz=xyz((x+y+z)
Chứng minh rằng:
a, nếu x+y=1 thì \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
b, nếu x,y,z khác -1 thì\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+z+y+1}+\frac{zx+2z+1}{zx+z+x+1}=3\)
c, Cho x,y,z đôi một khác nhau thỏa mãn\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) thì\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
Chứng minh rằng nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với x khác y, yz,xz khác 1, x, y, z khác 0 thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
1) Tìm x biết : a) \(a^2x+x=2a^2-3\) ; b) \(a^2x+3ax+9=a^2\left(a\ne0;a\ne-3\right)\)
2) Cho a + b + c = 3,rút gọn biểu thức \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
3) Chứng minh rằng nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1;x=y+z\)thì \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)