HV

chứng minh rằng nếu tứ giác ABCD có hai đường chéo với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hai cạnh đối kia

NC
3 tháng 7 2015 lúc 16:05

Chứng minh rằng nếu tứ giác ABCD có hai đường chéo vuông góc với nhau thì tổng bình phương hai cạnh đối này bằng tổng bình phương hi cạnh đối kia. 
Gọi giao của AC và BD là O , do hai đường chéo vuông góc 
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O 
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1) 
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2) 
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3) 
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4) 
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5) 
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6) 
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m ) 

Bình luận (0)
NC
3 tháng 7 2015 lúc 16:06

Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có A{D^2} = A{I^2} + I{D^2}  (1) 
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có A{B^2} = A{I^2} + I{B^2}  (2) 
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có C{D^2} = C{I^2} + I{D^2}  (3) 
Tam giác AID vuông tại I, áp dụng định lí Pytago, ta có B{C^2} = B{I^2} + I{C^2}  (4) 
Vế cộng vế (1) và (4), ta được: A{D^2} + B{C^2} = 2\left( {I{A^2} + I{B^2} + I{C^2} + I{D^2}} \right) (5) 
Vế cộng vế (2) và (3), ta được: A{B^2} + C{D^2} = 2\left( {I{A^2} + I{B^2} + I{C^2} + I{D^2}} \right) (6) 
Từ (5) và (6), ta suy ra A{D^2} + B{C^2} = A{B^2} + C{D^2}  (đpcm) 

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VM
Xem chi tiết
TQ
Xem chi tiết
HG
Xem chi tiết
TD
Xem chi tiết
BA
Xem chi tiết