MG

Chứng minh rằng : Nếu p và q là hai số nguyên tố lớn hơn 3 thì p2 - q2 ⋮ 24

AK
7 tháng 9 2021 lúc 21:28

P=p^2-q^2=(p^2-1)-(q^2-1)

Để cm P chia hết cho 24 thì cm P chia hết cho 3 và 8.

Cm chia hết cho 3

đặt p=3q+r(1<=r<=2). r=1=>p=3q+1

=>p-1=3q chia hết cho 3 r=2=>p=3q+2

=>p+1=3q+3 chia hết cho 3. => p^2-1 chia hết cho 3.

Chia hết cho 8 ta cm chia hết cho 2 và 4 giống kiểu ở trên ý bạn

Bình luận (0)
 Khách vãng lai đã xóa
LT
7 tháng 9 2021 lúc 21:29

Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

Bình luận (0)
 Khách vãng lai đã xóa

Vì p , q là 2 số nguyên tố lớn hơn 3 nên bình phương chúng chia 3 dư 1 do đó A chia hết cho 3

    Vì p , q là 2 số nguyên tố lớn hơn 3 nên bình phương chúng chia 8 dư 1 do đó A chia hết cho 8

Kết hợp ta được đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NK
Xem chi tiết
AT
Xem chi tiết
Xem chi tiết
VL
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
VN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết