A=(p−2)!−1B=(p−2)!−1
Do (p−1,p)=1(p−1,p)=1 nên ta chứng minh (p−1).A=(p−1)!−(p−1)(p−1).A=(p−1)!−(p−1) chia hết cho pp (đúng theo định lí wilson)
Tham khảo cách chứng minh định lí này tại đây , đây , hoặc đây
A=(p−2)!−1B=(p−2)!−1
Do (p−1,p)=1(p−1,p)=1 nên ta chứng minh (p−1).A=(p−1)!−(p−1)(p−1).A=(p−1)!−(p−1) chia hết cho pp (đúng theo định lí wilson)
Tham khảo cách chứng minh định lí này tại đây , đây , hoặc đây
chứng minh rằng nếu n^2+3 là số nguyên tố thì n là số chẵn
Chứng minh rằng nếu và p2 và p2 +2 là số nguyên tố thì p3+2 cũng là số nguyên tố.
Bài 13: Chứng minh rằng nếu p và p2+2 là hai số nguyên tố thì p3 +2 cũng là số
nguyên tố
Chứng minh rằng: nếu a+b là 1 số nguyên tố >2 thì a/b là phân số tối giản...
Chứng minh rằng nếu n2-1 là số nguyên tố (n>2 ) thì 2n+1 là hợp số
Chứng minh rằng nếu p và (p+2) là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12
a) chứng minh rằng với mọi số nguyên n>1 thì n4 + 4n là hợp số.
b) nếu p và 8p2 +1 là các số nguyên tố thì (8p2+2p+1) cũng là các số nguyên tố.
chứng minh rằng nếu số nguyên n lớn hơn 1 thỏa mãn n^2+4 và n^2+16 là các số nguyên tố thì n chia hết cho 5
cho 2^m-1 là một số nguyên tố chứng minh rằng m là số nguyên tố