LL

Chứng minh rằng nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4.

 

NT
1 tháng 3 2015 lúc 13:16

Xét 2 trường hợp n chẵn và n lẻ sau đây:

A) Nếu n là số lẻ thì tích n số tự nhiên bằng lẻ nên tất cả các số trong n đều là số lẻ, tổng của n số lẻ là một số lẻ mà theo đề bài, tổng của n số là 2012 ( loại trường hợp này)

B) Nếu n là số chẵn thì tích n số tự nhiên là một số chẵn nên trong n phải ít nhất có một số chẵn. Xét 2 khả năng sau:

 + Nếu trong n chỉ có 1 số chẵn thì (n-1) còn lại đều là các số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012( loại khả năng này)

+Nếu trong n có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên n chia hết cho 4. 

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
HL
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
BB
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
DS
Xem chi tiết
LD
Xem chi tiết