1. chứng minh rằng: 34n+2 + 2*42n+1 chia het cho 17 voi moi n thuoc so tu nhien.
2.cho số nguyên tố p lớn hơn 3 chứng minh: 3p+2p-1 chia het cho 42p
3. chứng minh rằng nếu tổng hai phân số tối giản là 1 số nguyên thì hai phân số đó có mẫu bằng nhau.
4. tìm số có 3 chữ số abc sao cho (a+b+c)abc=1000
5. xác định n thuộc số tự nhiên sao cho n2-3n+6 chia hết cho 5.
1) Cho phân số tối giản a/b
a) cmr a-b/ab cũng tối giản
b) ab/(a^2 + b^2) cũng tối giản
2) tìm n để : n^4 + n + 1 là số nguyên tố
cho a,b,c là các số nguyên dương , chứng minh rằng : nếu c>1 thì a+b và b+c không thể đồng thời là số nguyên tố
a) chứng minh rằng với mọi số nguyên n>1 thì n4 + 4n là hợp số.
b) nếu p và 8p2 +1 là các số nguyên tố thì (8p2+2p+1) cũng là các số nguyên tố.
Cho a,b là hai số nguyên dương khác nhau, thỏa mãn \(2a^2+a=3b^2+b\) .
Chứng minh \(\dfrac{a-b}{2a+2b+1}\) là phân số tối giản
Cho (a,b)=1. Chứng minh rằng phân số \(\dfrac{ab}{a^2+ab+b^2}\) tối giản
Cho phương trình: x2 - ax + b = 0 trong đó a, b là các số nguyên tố. Biết rằng phương trình có 2 nghiệm dương phân biệt. Chứng minh: a2 + b2 là số nguyên tố.
Bài 1: cho a,b,c là số nguyên tố lớn hơn 3. Chứng minh (a-b(b-c)(c-a) chia hết cho 48.
Bài 2: cho các số nguyên dương a,b,c sao cho (a-b)(b-c)(c-a)=a+b+c. Chứng minh a+b+c chia hết cho 27.
Bài 3: Chứng minh rằng với mọi số nguyên tố lớn hơn p>3 thì 2018-2p^4 chia hết cho 96.
chứng minh rằng nếu p là số nguyên tố thì:
A = 2.3.4...(p-3)(p-2) -1\(⋮p\)