\(2a+3b⋮17\Leftrightarrow2a+3b+17\left(2a+b\right)⋮17\Leftrightarrow36a+20b=4\left(9a+5b\right)⋮17\)
\(\text{mà 17 và 4 là 2 số nguyên tố cùng nhau nên:}9a+5b⋮17\)
\(\text{vậy:}2a+3b⋮17\Leftrightarrow9a+5b⋮17\)
\(2a+3b⋮17\Rightarrow8a+12b⋮17\)
\(\Rightarrow8a+9b+9a+5b\)
\(=17a+17b=17\left(a+b\right)⋮17\)
mà \(8a+12b⋮17\Rightarrow9a+5b⋮17\)
và ngược lại nếu \(9a+5b⋮17\Leftrightarrow2a+3b⋮17\)