\(\left(a^2+b^2+c^2\right).\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(=>a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(-\left(a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\right)=0\)
\(=>a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)
\(=>a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(=>\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(=>\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Tổng của 3 số không âm=0 <=> chúng=0
\(=>\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}}=>\hept{\begin{cases}ay=bx=>\frac{a}{x}=\frac{b}{y}\\az=cx=>\frac{a}{x}=\frac{c}{z}\\bz=cy=>\frac{b}{y}=\frac{c}{z}\end{cases}=>\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)}\)
FC Keita bn là thánh ak mà bảo ta sẽ giúp con nhưng thực chất chỉ là lời nói thoáng qua để có t i ck thôi ngon thì giải ra!!
576547647658768685879698965878768769