\(2b.d=c\left(b+d\right)\Leftrightarrow\left(a+c\right)d=c\left(b+d\right)\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(2b.d=c\left(b+d\right)\Leftrightarrow\left(a+c\right)d=c\left(b+d\right)\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng nếu a + c = 2b và 2bd = c ( b + d ) thì a/b = c/d với b, d khác 0
Chứng minh rằng: Nếu a+c= 2b và 2bd=c(b+d) (b+d khác 0) thì a/b=c/d
chứng minh rằng :Nếu a+c=2b và 2bd=c(b+d)
(b;d khác 0) thì a/b=c/d
Chứng minh rằng nếu a + c = 2b và 2bd = c.(b + d) với b, d khác 0 thì \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng nếu a + c = 2b và 2bd = c(b + d ) thì \(\frac{a}{b}=\frac{c}{d}\)với b,d khác 0.
CMR nếu : a+c=2b (1) và 2bd=c(b+d) (2) (b,d\(\ne\)0) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)
Chứng minh rằng : Nếu a+c =2b và 2bd =c(b+d) thì \(\frac{a}{b}=\frac{c}{d}\) ( b,d \(\ne\) 0)
Giải đầy đủ giúp tớ nha cảm ơn nhìu
CMR
nếu a+c=2b
và 2bd=c(b+d) (b,d\(\ne\)0)
thì \(\frac{a}{b}\)=\(\frac{c}{d}\)
a/ Nếu a + c = 2b
2bd = c(b + d)
Thì a/b = c/d ( b, d \(\ne\)0)
b/ Nếu a2 = bc
Thì a + b / a - b = c + a / c - a