Chương I - Căn bậc hai. Căn bậc ba

VT

a ) Cho a,b,c >0 C/m:

\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a^2+b^2+c^2}{a+b+c}\)

b ) Cho a,b,c > 0 . C/m :

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)

c ) Cho a,b,c > 0 . C/m :

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c.\)

giúp nha mn

HN
14 tháng 7 2017 lúc 9:49

a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)

\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

Bình luận (0)
HN
14 tháng 7 2017 lúc 9:53

b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)

\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)

Bình luận (0)
PA
14 tháng 7 2017 lúc 9:55

b)

Áp dụng BĐT Cauchy Shwarz, ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)

Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)^3}{9}}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)}{3}\times\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi a = b = c.

Bình luận (0)
HN
14 tháng 7 2017 lúc 9:55

c/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\ge\dfrac{3.\dfrac{\left(a+b+c\right)^2}{3}}{a+b+c}=a+b+c\)

Bình luận (0)
PA
14 tháng 7 2017 lúc 9:44

c)

Áp dụng BĐT Cauchy Shwarz, ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\dfrac{\left(a+b+c\right)^4}{9}\)

Áp dụng BĐT AM - GM, ta có:

\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3abc\le\dfrac{\left(a+b+c\right)^3}{9}\)

Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:

\(M=\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}\ge\dfrac{\dfrac{\left(a+b+c\right)^4}{9}}{\dfrac{\left(a+b+c\right)^3}{9}}=a+b+c\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

Bình luận (0)
VT
14 tháng 7 2017 lúc 9:39

Akai HarumaHung nguyen Ace Legona

Bình luận (3)

Các câu hỏi tương tự
PK
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QD
Xem chi tiết
HN
Xem chi tiết
HO
Xem chi tiết
HN
Xem chi tiết
SM
Xem chi tiết