a ) Cho a,b,c >0 C/m:
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a^2+b^2+c^2}{a+b+c}\)
b ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)
c ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c.\)
giúp nha mn
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
b)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)^3}{9}}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)}{3}\times\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c.
c/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\ge\dfrac{3.\dfrac{\left(a+b+c\right)^2}{3}}{a+b+c}=a+b+c\)
c)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\dfrac{\left(a+b+c\right)^4}{9}\)
Áp dụng BĐT AM - GM, ta có:
\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3abc\le\dfrac{\left(a+b+c\right)^3}{9}\)
Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:
\(M=\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}\ge\dfrac{\dfrac{\left(a+b+c\right)^4}{9}}{\dfrac{\left(a+b+c\right)^3}{9}}=a+b+c\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c