Đặt \(\dfrac{a}{b}=x;\dfrac{b}{c}=y;\dfrac{c}{a}=z\). Dễ thấy rằng
\(\dfrac{a+c}{b+c}=\dfrac{1+xy}{1+y}=x+\dfrac{1-x}{1+y}\)
Thiếp lập các hệ thức tương tự, bài toán trở về chứng minh với \(xyz=1\) có:
\(\dfrac{x-1}{y+1}+\dfrac{y-1}{z+1}+\dfrac{z-1}{x+1}\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(z+1\right)+\left(y^2-1\right)\left(x+1\right)+\left(z^2-1\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow x^2z+z^2y+y^2x+x^2+y^2+z^2\ge x+y+z+3\)
Áp dụng BĐT AM-GM ta có:
\(x^2z+z^2y+y^2x\ge3\sqrt[3]{\left(xyz\right)^3}=3\)
Vậy còn phải chứng minh \(x^2+y^2+z^2\ge x+y+z\)
Điều này đúng vì \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\ge x+y+z\)