SS

Chứng minh rằng nếu a + b = 1 thì a2 + b2 ≥ 1/2

TC
6 tháng 5 2022 lúc 20:20

\(a+b=1=>b=1-a\)

\(=>a^2+\left(1-a\right)^2\ge\dfrac{1}{2}\)

\(=>a^2+1-2a+a^2\ge\dfrac{1}{2}\)

\(\Leftrightarrow-2a+2a^2+1\ge\dfrac{1}{2}\)

\(\Leftrightarrow\left(-2a+2a^2+1\right).2\ge1\)

\(\Leftrightarrow-4a+4a^2+2\ge1\)

\(\Leftrightarrow-4a+4a^2+1\ge0\)

\(\Leftrightarrow\left(2a-1\right)^2\ge0\left(đúng\right)\)

\(''=''\left(khi\right)2a-1=0=>a=\dfrac{1}{2}\)

Bình luận (0)
HP
6 tháng 5 2022 lúc 20:20

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(đpcm\right)\)

Bình luận (0)
NT
6 tháng 5 2022 lúc 20:15

\(a+b=1\)

Áp dụng BĐT AM-GM, ta có:

\(\dfrac{a^2}{1}+\dfrac{b^2}{1}\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\) ( đpcm )

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MW
Xem chi tiết
HK
Xem chi tiết
HH
Xem chi tiết
HD
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết