TT

chứng minh rằng n4+6n3+11n2+6n chia hết cho 24 với mọi n là số tự nhiên

CT
26 tháng 6 2015 lúc 11:41

dat A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1) 
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*) 
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 (**). 
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co: 
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] = 
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4) 
nhan thay A(k+1) la tich cua so tu nhien lien tiep=> A(k+1) chia het cho 24 (***) 
tu (*) (**) va (***) => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*). 

Bình luận (0)
DV
26 tháng 6 2015 lúc 11:38

Phân tích n^4+6n^3+n^2+6n thành: n(n+)(n+2)(n+3)
Nhận thấy:n,(n+),(n+2),(n+3) là 4 số nguyên liên tiếp với n nguyên
=> n(n+)(n+2)(n+3)chia hết cho 24
=>n^4+6n^3+n^2+6n chia hết cho 24

     tick đúng cho mình nhé !

Bình luận (0)
DV
26 tháng 6 2015 lúc 11:40

Phân tích n^4+6n^3+n^2+6n thành: n(n+)(n+2)(n+3)
Nhận thấy:n,(n+),(n+2),(n+3) là 4 số tự nhiên liên tiếp với n là số tự nhiên.
=> n(n+)(n+2)(n+3)chia hết cho 24
=> n^4+6n^3+n^2+6n chia hết cho 24

     tick đúng cho mình nhé !

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NV
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
I5
Xem chi tiết
LL
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết