Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

KN

Chứng minh rằng; \(n^2+n+1\) không chia hết cho 9

giúp mình với

TA
15 tháng 10 2020 lúc 21:47

\(9=3^2\)

\(min=1,min=2\left(\varnothing\right)\)

\(min=3\Rightarrow3^2+3+1=3^2+4\Leftrightarrow3^2⋮9\)\(;\)\(4⋮̸9\)

\(\Rightarrow n^2+n+1⋮̸9\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
16 tháng 10 2020 lúc 18:09

Theo mình nghĩ đề cần thêm điều kiện n là STN

Bài làm:

Xét n có 3 dạng sau: 3k ; 3k+1 ; 3k+2

Nếu \(n=3k\) khi đó:

\(n^2+n+1=9k^2+3k+1=3k\left(3k+1\right)+1\) không chia hết cho 3

=> BT không chia hết cho 9

Nếu \(n=3k+1\) khi đó:

\(n^2+n+1=\left(3k+1\right)^2+3k+1+1=9k^2+6k+1+3k+2\)

\(=9k^2+9k+3=9\left(k^2+k\right)+3\) không chia hết cho 9

Nếu \(n=3k+2\) khi đó:

\(n^2+n+1=\left(3k+2\right)^2+3k+2+1=9k^2+12k+4+3k+3\)

\(=9k^2+15k+7=3\left(3k^2+5k+2\right)+1\) không chia hết cho 3

=> BT không chia hết cho 9

Từ 3 điều trên => đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TH
Xem chi tiết
TQ
Xem chi tiết
LM
Xem chi tiết
NH
Xem chi tiết
TB
Xem chi tiết
KN
Xem chi tiết
KL
Xem chi tiết
KG
Xem chi tiết
HL
Xem chi tiết