Lời giải:
Đătk $1992=a$ thì:
$N=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=4(a^2+3a+3)+2$
$\Rightarrow N$ chia $4$ dư $2$
Mà 1 số chính phương chia $4$ chỉ có thể có dư là $0$ hoặc $1$.
$\Rightarrow N$ không thể là scp.
Ta có đpcm.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Lời giải:
Đătk $1992=a$ thì:
$N=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=4(a^2+3a+3)+2$
$\Rightarrow N$ chia $4$ dư $2$
Mà 1 số chính phương chia $4$ chỉ có thể có dư là $0$ hoặc $1$.
$\Rightarrow N$ không thể là scp.
Ta có đpcm.
chứng minh rằng các số 3^n+4 đều không phải là số chính phương
Chứng minh rằng 10n + 8 không phải là số chính phương với n là số tự nhiên.
Chứng minh rằng: 3n +4 không phải là số chính Phương
bài1
tìm số tự nhiên n có 4 chữ số, biết rằng n là số chính phương và n là bội của 147
bài 2
chứng minh rằng: n^2012+1 không phải là số chính phương với n là số tự nhiên lẻ.
Chứng minh rằng 20192020146 không phải là số chính phương.
Chứng tỏ rằng 111....112222....22 được tạo thành từ 100 chữ số 1 và 100 chữ số 2 là tích của hai số nguyên liên tiếp
Chứng minh số 1234567890 không phải là số chính phương
Chứng minh rằng một số có tổng các chữ số là 2004 thì số đó ko phải là số chính phương
Chứng minh rằng một số có tổng các chữ số là 2006 thì số đó ko phải là số chính phương
chứng minh rằng :
a) S = 1 + 3 +5 +7 + ... + 2n - 1 với n thuộc N* là số chính phương .
b) S = 2 +4 +6 + ... + 2n với n thuộc N* không phải là số chính phương
Chứng minh rằng tồn tại 19952 số tự nhiên liên tiếp mà tất cả đều là hợp số
Chứng minh rằng một số có tổng các chữ số là 2006 không phải là số chính phương
CHỨNG MINH RẰNG A KHÔNG PHẢI LÀ SỐ CHÍNH PHƯƠNG
\(A=n^{2002}+2002\)