SN

chứng minh rằng mọi số tự nhiên n>6 có thể viết dưới dạng 2 số nguyên tố cùng nhau lớn hơn 1

DV
31 tháng 5 2015 lúc 10:46

n là số tự nhiên lớn hơn 6 nên n có thể có các dạng sau:

+)  Với n = 6k + 1 (k \(\in\) N*) 

=> n = 3k + (3k + 1)

3k; 3k + 1 là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau 

+) Với n = 6k + 3

Viết n = (3k +1) + (3k +2) 

mà (3k +1); (3k+2) là 2 số tự nhiên liên tiếp => chúng nguyên tố cùng nhau

+) Tương tự với n = 6k + 5 

Viết n = (3k+2) + (3k +3)

mà 3k + 2 và 3k + 3 nguyên tố cùng nhau

+) Với n = 6k + 2 

Viết n = (6k -1) + 3

Gọi d = ƯCLN (6k - 1; 3)

=> 6k - 1 chia hết cho d;

    3 chia hết cho d => 3. 2k = 6k chia hết cho d

=> 6k - (6k -1) = 1 chia hết cho d => d = 1

do đó, 6k - 1 và 3 nguyên tố cùng nhau

+) Với n = 6k + 4 

Viết n = (6k +1 ) + 3

Dễ có: 6k +1 và 3 nguyên tố cùng nhau

=> ĐPCM 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VT
Xem chi tiết
HN
Xem chi tiết
LH
Xem chi tiết
BY
Xem chi tiết
CC
Xem chi tiết
DV
Xem chi tiết
LQ
Xem chi tiết
H24
Xem chi tiết