Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
Chứng minh rằng: a, 1/12.22+5/22.32+5/32.42+...+5/92.102 <1 b,1/3+2/32+3/33+...+100/3100 <3/4
- Chứng minh rằng: M = 1/3 + 2/32 + 3/33 + ... + 100/3100 < 3/4
Chứng minh rằng : \(M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}<\frac{3}{4}\)
Chứng minh rằng :100- ( 1+1/2+1/3+...+1/100)=1/2+2/3+3/4+...+99/100
Chứng minh rằng 1/3 + 2/3^2 + 3/3^3 + .....+ 100/3^100 < 3/4?
a) chứng minh rằng 1/22 + 1/32 + 1/42 + ...... + 1/20082 < 1
b) cho A= 1002007 + 1/ 1002008 +1; B= 1002006 + 1/ 1002007 +1. hãy so sánh A và B?
c) S= 1/31+1/32+...+1/60. chứng minh: 3/5 < S < 4/5
chứng minh rằng:
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)