HH

Chứng minh rằng: \(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)\)chia hết cho 30 ( với mọi n thuộc N*)

HT
26 tháng 2 2016 lúc 13:58

Có:\(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)=\left(3^n.3^2-2^n.2^{^4}+3^n+2^n\right)=3^n\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15\)Vì 30 chia hết cho 10 nên \(3^n.10\) cũng chia hết cho 10      

Vì 30 chia hết cho 15 nên \(2^n.15\) cũng chia hết cho 15      

Từ 2 điều nêu trên ta suy ra:  \(\left(3^n.10-2^n.30\right)\)  chia hết cho 30

Vậy: \(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)\)chia hết cho 30 (ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
BA
Xem chi tiết
NG
Xem chi tiết
NN
Xem chi tiết
PQ
Xem chi tiết
LD
Xem chi tiết
AT
Xem chi tiết
KS
Xem chi tiết