Gọi a là 1 số nguyên
Ta có: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)⋮6\)( vì là tích của 3 số nguyên liên tiếp.)
Gọi a là 1 số nguyên
Ta có: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)⋮6\)( vì là tích của 3 số nguyên liên tiếp.)
-Đề thi HSG cấp II toàn quốc,1970- Chứng minh rằng lập phương của một số nguyên n bất kì (n>1) trừ đi 13 lần số nguyên đó thì luôn chia hết cho 6?
Cho p là số nguyên tố lớn hơn 3 . Biết p+2 cũng là số nguyên tố .Chứng minh rằng p+1 chia hết cho 6
1a) Tìm các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm các số nguyên tố p đẻ 13p+1 là lập phương của 1 số tự nhiên
2) Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng: có vô số số tự nhiên n thỏa mãn n.2^n-1 chia hết cho p
3) Tìm n thuộc N* để: a) n^4+4 là số nguyên tố
b)n^2003+n^2002+1 là số nguyên tố
Chứng minh rằng tỏng lập phương 3 số nguyên liên tiếp chia hết cho 9 .
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1).(p+4) chia hết cho 6
chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
Cho plaf số nguyên tố , n là số tự nhiên lớn hơn 1 thỏa mãn p-1 chia hết cho n và n3-1 chia hết cho p . Chứng minh rằng : 4p-3 là số chính phương
Cho 2016 số nguyên có tổng bằng 2016. Chứng minh tổng các lập phương của 2016 số đó chia hết cho 6.