Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng tồn tại vô số số nguyên dương a sao cho Z=n4+a không là số nguyên tố ∀n ∈ N*
Bài 1: chứng minh rằng nếu p là số nguyên tố lẻ thì không tồn tại các số nguyên x,y sao cho 1/p=1/x^2+1/y^2
Chứng minh rằng không tồn tại một đa thức với hệ số nguyên P(x)=23 và P(23)=84.
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
cho đa thức P(x) tất cả hệ số đều nguyên, hệ số bậc cao nhất là 1, giả sử tồn tại các số nguyên a,b,c khác nhau sao cho P(a)=P(b)=P(c)=2. Chứng minh rằng không tồn tại số nguyên d sao cho P(d)=3
chứng minh rằng không tồn tại cặp số nguyên x,y thoả mãn x^2-2018=y^2
Cho đa thức P(x) có tất cả các hệ số nguyên, hệ số bậc cao nhất là 1. Giả sử tồn tại các số nguyên a,b,c đôi một khác nhau sao cho P(a)=P(b)=P(c)=2, chứng minh rằng không tồn tại số nguyên d sao cho P(d)=3
Tồn tại bao nhiêu cặp số (x;y) với x,y là các số nguyên dương không vượt quá 1000 sao cho x2 + y2 chia hết cho 121.
Tồn tại bao nhiêu cặp số (x;y) với x,y là các số nguyên dương không vượt quá 1000 sao cho x2 + y2 chia hết cho 121.