Chứng minh rằng với 3 số nguyên tố lớn hơn 3 bất kỳ luôn tìm được 2 số có tổng hoặc hiều chia hết cho 12
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Cho m, n là 2 số tự nhiên, biết rằng khi khai triển ra các thừa số nguyên tố thì m, n đều được tạo thành từ 7 số nguyên tố lẻ là p1, p2, p3, p4, p5, p6, p7 và m có tất cả 1024 ước số, n có 256 ước số. Chứng minh rằng tích m.n khi chia cho 4 sẽ có số dư là 1.
CM số dư trong phép chia số nguyên tố P cho 30 chỉ có thể là 1 hoặc 1 số nguyên tố khác
Chứng minh rằng mọi số nguyên tố bình phương khác 2 và 3 ,khi chia cho 12 dư 1
Cho 31 số nguyên tố p1 < p2 < ... < p31. Chứng minh rằng nếu (p1)4 + (p2)4 + ... + (p31)4 chia hết cho 30 thì trong 31 số này sẽ tìm được 3 số nguyên tố liên tiếp
chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 đều chia cho 12 dư 1
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,