Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath
Chứng minh rằng hiệu của một số tự nhiên bất kì trừ đi tổng các chữ số của nó là một số chia hết cho 9
Chứng minh rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
1. tìm số tự nhiên n có hai chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương.
2.tìm số tự nhiên có hai chữ số, biết rằng nếu nhân nó với 45 thì được một số chính phương.
3.a) Các số tự nhiên n và 2n có tổng các các chữ số bằng nhau. Chứng minh rằng n chia hết cho 9.
b)* tìm số chính phương n cá ba chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không đổi.
chứng minh rằng: hiệu của một số và tổng các chữ số của nó thì chia hết cho 9 ?
cho a là số tự nhiên được viết bởi 222 chữ số 9. Hãy tìm tổng các chữ số của n biết n=a2+1
tổng của 1 số tự nhiên có 3 chữ số là 7. Chứng minh rằng số đó chia hết cho 7 khi vầ chỉ khi chữ số hàng chục và chữ số hàng đơn vị của nó bằng nhau
Chứng minh rằng hiệu của 1 số vs tổng các chữ số của nó chia hết cho 9
Cho 102 số tự nhiên bất kỳ. Chứng minh rằng tồn tại 2 số trong 102 số đã cho mà chúng có tổng hoặc hiệu chia hết cho 200
Tìm 1 số có 2 chữ số. Biết chữ số hàng chục bàng hiệu giữa số đó và số viết theo thứ tự ngược lại
Cho số tự nhiên M. Người ta đổi chỗ các chữ số của M để được số N gấp 3 lần số M. Chứng minh rằng số N chia hết cho 27
Chứng minh : Hiệu giữa số tự nhiên A và tổng các chữ số của A luôn chia hết cho 9