DH

Chứng minh rằng hai số 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

ND
26 tháng 12 2017 lúc 20:38

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

=> 2 chia hết cho d

Vậy ước chung lớn nhất của 2n + 1 và 6n + 5 là 2 .

Bình luận (0)
NT
27 tháng 12 2017 lúc 11:27

Gọi a là ƯCLN(2n+1, 6n+5)

ta có: 2n+1 chia hết cho a và 6n+5 chia hết cho a

        3.(2n+1) chia hết cho a và (6n + 5) chia hết cho a

         6n+3 chia hết cho a và 6n+5 chia hết cho a

       [(6n+5) - (6n+3)] chia hết cho a

       [6n+5 - 6n -3] chia hết cho a

        2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung

Bình luận (0)
EC
13 tháng 3 2023 lúc 21:02

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5 (dϵN')

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

  2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết