PB

Chứng minh rằng: Giá trị của biểu thức  x x - 3 - x 2 + 3 x 2 x + 3 . x + 3 x 2 - 3 x - x x 2 - 9 bằng 1 khi x ≠ 0, x  ≠  3, x  ≠  - 3 và x  ≠  - 3/2 .

CT
23 tháng 1 2017 lúc 18:05

Biểu thức  x x - 3 - x 2 + 3 x 2 x + 3 . x + 3 x 2 - 3 x - x x 2 - 9 xác định khi x – 3  ≠  0,2x + 3  ≠  0, x 2 - 3 x   ≠  0 và x 2 - 9   ≠  0

Suy ra: x  ≠  3; x  ≠  - 3/2 ; x  ≠  0; x  ≠  3 và x  ≠   ± 3

Với điều kiện x  ≠  3; x  ≠  - 3/2 ; x  ≠  0; x  ≠  - 3, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy giá trị của biểu thức  x x - 3 - x 2 + 3 x 2 x + 3 . x + 3 x 2 - 3 x - x x 2 - 9 bằng 1 khi x  ≠  3; x  ≠  - 3/2 ; x  ≠  0; x  ≠  - 3

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
KA
Xem chi tiết
PB
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết