Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng f′(x) = 0 ∀x ∈ R , nếu: f ( x ) = 3 ( sin 4 x + cos 4 x ) − 2 ( sin 6 x + cos 6 x )
Chứng minh rằng f′(x) > 0 ∀x ∈ R, nếu f ( x ) = 2 x + sin x
1. Cho đa thức \(f\left(x\right)=x^3-3x^2+9x+1964\). Chứng minh rằng tồn tại số nguyên \(a\) sao cho \(f\left(a\right)⋮3^{2014}\)
2. Chứng minh rằng với mọi \(a\inℤ\), phương trình \(x^4-2007x^3+\left(2006+a\right)x^2-2005x+a=0\) không thể có 2 nghiệm nguyên phân biệt.
3. Tìm tất cả các số nguyên dương \(n\) sao cho \(2^n-1|3^n-1\)
Chứng minh rằng f′(x) = 0 ∀x ∈ R , nếu: f ( x ) = cos 6 x + 2 sin 4 x . cos 2 x + 3 sin 2 x . cos 4 x + sin 4 x
Chứng minh phương trình sau có ít nhất 2 nghiệm phân biệt Với mọi m thuộc R. đặt f(x)=X^4+(m-2)x^3+x^3+(3m+1)x-4m-2016=0
Cho đa thức f(x) = x^2+ax+b; a, b ∈ R. Giả sử phương trình f (f(x)) = 0 có 4 nghiệm thực phân biệt và tổng của hai trong bốn nghiệm đó bằng −1. Chứng minh rằng b ≤ − 1/4
Cho hs
\(f\left(x\right)=-\dfrac{mx^3}{3}+3x^2-mx+1\)
tìm m để
a) \(f'\left(x\right)\le0,\forall x\in R\)
b) pt\(f'\left(x\right)=0\) có 2 nghiệm âm phân biệt
Cho hàm số f ( x ) x 2 + 1 x 3 - x + 6 x ≢ 3 ; x ≢ 2 b + 3 x = 3 ; b ∈ R . Tìm b để f(x) liên tục tại x= 3.
A. 3
B. - 3
C. 2 3 3
D. - 2 3 3
1) cho hàm số \(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}x^2+8x-1\) có đạo hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0
2) cho hàm số \(f\left(x\right)=\dfrac{3-3x+x^2}{x-1}\) giải bất phương trình f'(x) = 0