hình như đề bài phải là \(\frac{a}{b}=\frac{b}{d}\)chứ nhỉ
hình như đề bài phải là \(\frac{a}{b}=\frac{b}{d}\)chứ nhỉ
Bài 1,\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\). Chứng minh rằng: \(\frac{a}{b}=\frac{5}{6}\)
Bài 3, Bốn số a, b,c,d thỏa mãn điều kiện:\(b^2=ac;c^2=bd.\)Chứng minh:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2, Chứng minh rằng nếu: \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì
Các bạn nhớ giải chính xác nhé
Chứng minh rằng : Nếu \(\frac{a}{b}=\frac{b}{d}\)thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
60. Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Chứng minh rằng : Nếu \(\frac{a}{b}=\frac{b}{d}\)thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)
Chào các bạn, hôm nay mình có một bài toán khá khó muốn nhờ các bạn giải giúp
a) Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Cho \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng minh: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Cho 2 số hữu tỉ \(\frac{a}{b},\frac{c}{d}\)
Chứng minh rằng: nếu \(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
BÀI 62 * TRANG 31 SBT TOÁN 7Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)chứng tỏ rằng nếu \(b\ne-d\)thì \(\frac{a+c}{b+d}=\frac{a}{b}\), nếu \(b\ne d\)thì \(\frac{a-c}{b-d}=\frac{a}{b}\)
BÀI 63 TRANG 32 :
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},c\ne+-d\) chứng tỏ rằng :
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)