SA

Chứng minh rằng \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)

VT
30 tháng 6 2019 lúc 21:51

\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+\frac{2.1}{3}\sqrt{2.3}-\frac{4.1}{2}\sqrt{3.2}\)

\(=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\)

\(=\sqrt{6}\left(\frac{9}{6}+\frac{4}{6}-\frac{12}{6}\right)=\sqrt{6}.\frac{1}{6}=\frac{\sqrt{6}}{6}\)

Vậy \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
BS
Xem chi tiết
HH
Xem chi tiết
NN
Xem chi tiết
LG
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
TV
Xem chi tiết
YN
Xem chi tiết