Ôn tập phương trình bậc hai một ẩn

NH

Chứng minh rằng :

\(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}>\frac{9}{4}\)

AH
1 tháng 10 2019 lúc 0:16

Lời giải:
Đặt biểu thức đã cho là $P$

\(2P=\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{5}+\sqrt{7}}+...+\frac{2}{\sqrt{97}+\sqrt{99}}>\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}+....+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{101}}(*)\)

Mà:

\(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+....+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{101}}\)
\(=\frac{\sqrt{3}-\sqrt{1}}{(\sqrt{1}+\sqrt{3})(\sqrt{3}-\sqrt{1})}+\frac{\sqrt{5}-\sqrt{3}}{(\sqrt{3}+\sqrt{5})(\sqrt{5}-\sqrt{3})}+....+\frac{\sqrt{101}-\sqrt{99}}{(\sqrt{99}+\sqrt{101})(\sqrt{101}-\sqrt{99})}\)

\(=\frac{\sqrt{3}-\sqrt{1}}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+...+\frac{\sqrt{101}-\sqrt{99}}{2}\)

\(=\frac{\sqrt{101}-\sqrt{1}}{2}>\frac{\sqrt{100}-1}{2}=\frac{9}{2}(**)\)

Từ \((*); (**)\Rightarrow 2P>\frac{9}{2}\Rightarrow P>\frac{9}{4}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
NP
Xem chi tiết
HP
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
AQ
Xem chi tiết
LT
Xem chi tiết