Đặt A=1/3 + 1/5 +1/7 +1/9+.....+1/243
A=1/3 +(1/5+1/7+1/9)+(1/11+1/13+1/15+....+1/27)+(1/29+1/31+1/33+.......+1/81)+(1/83+1/85+1/87+...+1/243)
=> A>1/3+ 1/9 x3+1/27 x9+1/81x27+ 1/243x81=1/3x5=5/3
=> A>5/3>5/4
=>A>5/4
=> 1/3+1/5+1/7+.....+1/397 > 5/4
=>1+1/3+1/5+1/7+.....+1/397 > 9/4
=>1/5x (1+1/3+1/5+1/7+.....+1/397)> 9/4 x 1/5
=>1/5+1/15+1/25+......+1/1985 > 9/20
??????????????????????????????????????????????????
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Đặt A=1/5+1/15+1/25+...+1/1985
A=1/5(1+1/3+1/5+...+1/397)<1/5(1+1-2/3+1-4/5+...+1-396/397)
=> A < 1/5[(1+1+...+1)-(2/3+4/5+..+396/397)]
=> A <1/5[200-(396/397+396/397+...+396/397)]
<1/5.596/1985<1/5.9/4=9/20
Xin lỗi nha cách đó không ổn rồi