CD

Chứng minh rằng :
\(\frac{1}{1.2.3}\)+\(\frac{1}{2.3.4}\)+\(\frac{1}{3.4.5}\)+..+\(\frac{1}{18.19.20}\)<\(\frac{1}{4}\)
Ai làm đúng mik sẽ tick

TD
24 tháng 3 2016 lúc 19:18

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)

\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{19.20}<\)\(\frac{1}{2}\)

\(2A<\)\(\frac{1}{2}\)

\(\Rightarrow A<\)\(\frac{1}{4}\)

Vậy \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}<\)\(\frac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
CN
Xem chi tiết
CD
Xem chi tiết
NK
Xem chi tiết
BT
Xem chi tiết
ES
Xem chi tiết
LH
Xem chi tiết
HT
Xem chi tiết
DA
Xem chi tiết
PA
Xem chi tiết