\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}=\frac{1001}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
\(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}=\frac{1001}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
Cho:
A=\(\frac{1}{1000}+\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)
Chứng minh rằng\(\frac{1}{4}\)<A<\(\frac{1}{2}\)
Chứng minh rằng: \(\frac{1}{100}\)+\(\frac{1}{1001}\)+............+\(\frac{1}{2000}\)> \(\frac{1}{2}\)
Chứng minh rằng:
a) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}<1\)
b) \(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}>\frac{13}{21}\)
Cho S = \(\frac{-1}{1001}+\frac{-1}{1002}+\frac{-1}{1003}+...+\frac{-1}{2000}\)
Chứng tỏ rằng S<\(\frac{-7}{12}\)
Chứng minh rằng : \(\frac{1}{201}< \frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+\frac{1}{1005}< \frac{1}{201}\)Ai giải nhanh mình tick nha
chứng minh rằng \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......\frac{9999}{1000}< \frac{1}{100}\)
Chứng minh rằng :
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{1999}}>1000\)
Cho \(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\) và \(B=\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\)
Tính \(\left(A-B-1\right)^{1000}\)
Chứng minh rằng:
\(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2}\)