CA

chứng minh rằng các số 3^n + 4 (n thuộc n) không thể là các số chính phương

NH
12 tháng 1 2016 lúc 20:45

làm ko bt đúng hay sai:

giả sử 3^n+4 là scp=>3^n+4=a^2

mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ

=>a có dạng 4k+1 hoặc a có dạng 4k+3

+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1

+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1

vậy a^2=8m+1(1)

mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)

nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)

vậy 3^n+4 ko thể là scp

Bình luận (0)
NQ
12 tháng 1 2016 lúc 20:30

3n + 4 và số nào không thể cùng là các số CP 

Bình luận (0)